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Abstract:  System of equations models with spatial lags in dependent variable and error terms can be estimated 

using the full information Feasible Generalized Spatial Three Stages Least Square (FGS3SLS) estimator proposed 

by Kelejian & Prucha (2004).  The estimator is consistent and asymptotically normal, but its finite sample properties 

are not analytically determinable.  In absence of very large samples as is the case in most applied work, it is difficult 

to interpret the results with confidence based on asymptotic results only.  This paper evaluates the performance of 

the FGS3SLS estimator in finite samples and its sensitivity to varying degrees of spatial interaction and externalities 

using Monte Carlo simulations.  
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1. Introduction  

The modeling of spatial processes has attained a mainstream position in social sciences 

(Goodchild et al., 2000).  Anselin (2010) presents an historical analysis of how spatial 

econometrics has attained a mainstream status in applied econometrics and social science 

methodology.  In the simplest cases, the variables of interest are spatially correlated with their 

neighbors and with other variables.  As we move from one variable to a system of variables, 

modeling the spatial interactions becomes complex.  The complexity further increases as the 
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randomness becomes correlated spatially and across equations.  Modeling the strength of spatial 

interactions and externalities requires the specification and estimation of spatial econometric 

models.  However, the available estimators (Anselin, 1988; Case, 1991; Case et al., 1993) lack 

methodological sophistication and computational simplicity to accurately estimate simultaneous 

systems with spatial autoregressive dependent variables and spatially interrelated cross sectional 

equations.  They are often based on quasi-maximum likelihood procedures and might not have 

feasible solutions in medium to large samples.  Further, they are designed for single equation 

frameworks (See Kelejian & Prucha, 1999 for an extensive discussion on this issue). 

To estimate models for such processes, Kelejian & Prucha (2004) proposed the limited 

information Feasible Generalized Spatial Two Stage (FGS2SLS) and full information Feasible 

Generalized Three Stage Estimators (FGS3SLS).  These estimators are based on generalized 

methods of moments using approximation of optimal instruments, and thus are computationally 

simple.  Kelejian and Prucha show that the estimators are consistent and asymptotically normal.  

Some of the applied examples of this estimator include Ngeleza et al. (2006) to determine the 

geographical and institutional determinants of real income, Driffield (2006) for modeling spatial 

spillovers of foreign direct investment, Fishback et al. (2006) for modeling the impact of New 

Deal expenditures on mobility during the great depression. More recent applications includes 

applications in the fields of assessing regional growth (Gebremariam et al. 2012)….. 

It is important to understand how this estimator behaves in applied studies given its relevance in 

estimating many of the complex spatial processes that have been largely ignored thus far.  

However, our understanding of this estimator is at best, rudimentary.  The number of 

publications using this estimator is relatively few, and only its asymptotic properties have been 

established so far.  In absence of very large samples, as is the case in much applied work, it is 

difficult to interpret the results with confidence based on asymptotic results only. 

One alternative to employ in a situation such as this is to use finite sample approximations or 

asymptotic expansions. However, these approximations tend to be very complex, the results 

difficult to interpret and the computations very advanced.  Some early work on this topic is 

summarized in Philips (1983) and Rothenberg (1984).  In contrast, the method of Monte Carlo 

replaces the skills needed in asymptotic approximations by relying on computational power of 
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computers.  In this paper, the properties of the parameters of interest are studied through a series 

of stochastic simulations and their statistics are analyzed (Davidson & MacKinnon, 1993). 

This paper investigates the performance of the FGS3SLS estimator for a system of simultaneous 

equations, with spatial autoregressive dependent variables and spatially autocorrelated error 

structures using Monte Carlo experiments.  Performance is measured by its ability to estimate 

parameters of the model and sensitivity of the results to varying degree of spatial dependences, 

choice of spatial weight matrix, sample size and variance covariance matrices.  The paper 

concludes by emphasizing the need for further studies on the subject to increase our 

understanding of the estimator’s behavior in applied work. 

The rest of the paper is organized as follows.  Section 2 sets up the model used for the study.  

Section 3 briefly describes the estimator and section 4 describes the experimental design.  The 

results of the simulation exercise are presented in section 5.  Section 6 summarizes the main 

findings and concludes the study with direction for future research.  

 

2. Model Structure 

2.1 Formal Considerations 

The performance of the FGS3SLS estimator was tested using a model specification closely 

resembling the structure of the model used in Sarraf (2012) to analyze the regional social 

dynamics and its impacts on land-use change.  The model used here consists of a system of 

simultaneous equations with two endogenous variables, their spatial and temporal lags and two 

exogenous variables.  The spatial lag of the dependent variable is treated as endogenous while 

the temporal lag is considered as predetermined, since the model is conditioned on past values of 

the dependent variable.  The disturbances are assumed to be correlated across space and across 

different equations.  This form of model allows the analyst (a) to capture spatial processes like 

diffusion across space, (b) to address problems of ecological fallacy or presence of some local 

conditions leading to spatially correlated error structures, and (c) to determine the correlation 

between two spatial processes.  Further, the specification allows forecasting of the value of 

dependent variables conditional on its own past values, and other exogenous variables after 

accounting for the underlying spatial processes.  
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Let 1y  represent percent abandoned housing units in a census tract and 2y  represent net in-

migration of households.  Equation 1 states that percent abandoned units 1y  depend on: (1) the 

magnitude of net in-migration of households ( 2y ) and percent housing abandonment in 

neighboring tracts ( 1Wy ) in the current period; (2) the percentage of the housing abandoned in the 

previous period ( 1x ); (3) the distance from interstate ( 3x ); and (4) a random component ( 1u ).  

Simultaneously, the net in-migration of households is endogenous and depends on the percentage 

of units abandoned since higher housing abandonment tends to repel more households from the 

region.  According to the equation (2), the magnitude of net in migration of households ( 2y ) in a 

tract depends on:  (1) the percentage of housing abandonment ( 1y ) and net in migration of 

households in the neighboring tracts ( 2Wy ) in the current period; (2) lagged values of net in-

migration ( 2x ); (3) the condition of infrastructure ( 4x ); and (4) a random component 2u . Thus, 

housing abandonment and net in migration of households are jointly determined.  Note that 3x  is 

treated as fixed over time while 4x  is time dependent but still exogenous. 

1 1 2 1 1 1 1 1 3 3 1y y W y x x u         (1) 

2 1 2 2 2 2 2 2 4 4 2y y W y x x u         (2) 

where, , ( 1,2)iy i 
 
represents the endogenous variables we are interested to forecast.  i iW y ’s are 

the spatially lagged dependent variables with the spatial lag parameter i . iW  is the row 

standardized weight matrix of known constants describing the neighborhood structure of 

observations. 1x
 

and 2x are the temporally lagged values of dependent variable 1y and 2y  

respectively, 3x  and 4x  are the exogenously determined variables whose values either remain 

fixed throughout the simulation or are known a priori. 1u  and 2u  represent the stochastic 

component of the model whose behavior is elaborated below. 

The disturbance vectors 1u  and 2u  in equations (1) and (2) are assumed to be correlated across 

space and across equations.  The spatial geography over which the social dynamics are occurring 

is different from the administrative geography of census tracts.  The aggregation of data at the 

tract level leads to correlation of disturbances across tracts.  Further any randomness affecting 
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housing abandonment and change in number of households may be correlated.  Thus, the current 

specification allows for randomness that is also correlated across equations. 

1 1 3 1 1u W u    (3) 

2 2 4 2 2u W u    (4) 

2

1 12

1 2 2

21 2

, ( , )with Cov
 

 
 

 
    

 
 (5) 

Equations (3) and (4) characterize the correlation across space where 3 1W u and 4 2W u  are average 

values of error terms in the neighboring locations, and 1  and 2  depict the degree of spatial 

correlation of the error terms. 1  and 2  are non-spatially correlated disturbances but are 

correlated across equations with the variance covariance matrix   (equation 5).  This completes 

the specification of the hypothetical model. 

2.2 Generalized form 

For brevity, the model system represented in equations (1) to (5) can be rewritten in matrix 

notation as: 

1 1 1 1 31 1 3

2 2 2 2 42 2 4

1

1 3 1

1

2 4 2

. . . 0. . 0.

. . 0. . 0. .

(1 ) .

(1 ) .

n n n n n n

n n n n n n

I W I I I I Iy x x

I I W I I I Iy x x

W

W

   

   

 

 





          
           

           

 
  

 

 (6) 

, . . .a a b bor BY T X T X U    (7) 

where,  1 2,Y y y  is a vector of endogenous variables,  1 2,aX x x  is a vector of temporally 

lagged endogenous variable Y,  3 4,bX x x  is a vector of exogenous variables and nI is an 

identity matrix of dimension  n.  B, aT  and bT  represent the coefficients associated with these 

variables in equation (6).   1 2,U u u  represents the vector of disturbance terms.  The estimator 

is described in Appendix C. 
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3. Monte Carlo Experiments 

With the model structure in place, designing the Monte Carlo experiment consists of three 

additional parts, namely: defining the parameter settings; generating the spatio-temporal array of 

synthetic data for different variables consistent with the underlying spatial process; and 

designing the simulations to reduce errors due to randomization and analysis of alternative 

scenarios.  Each of these steps is elaborated below.  

3.1 Parameter settings 

This section assigns values to the parameters used in the model specified in equations (1) 

through (5) including the values of all the coefficients, the variance covariance matrix of 

disturbance terms, the weight matrix and the spatial dependence parameters. 

The parameters for the spatial lag of the dependent variable and for spatial autocorrelation in the 

error terms { i , i } include all possible combinations from the set {-0.8, -0.6, -0.4, -0.2, 0, 0.2, 

0.4, 0.6, 0.8} in different experiments for each choice of  .  For clarity of the exposition, we 

assume a common neighborhood structure 1 2 3 4( )W W W W W    , 1 2   and 1 2  .  It 

should be noted that in applications, this is not the case.  Weight matrices for different variables 

will take different specifications depending on the nature of spatial processes that influence them 

(see for example, Cuaresma, 2010).  However, there is no loss of generality by using the same 

weight matrix for different process for the Monte Carlo experiments. 

We consider three samples sizes of 100, 250 and 500 observations each.  For each sample size, 

two different weight matrices are considered.  The specification of W closely follows the weight 

matrix described in Kelejian & Prucha (1999) and Das, Kelejian, & Prucha (2003).  These 

matrices differ in the degree of sparseness.  For the first specification, a hypothetical circular 

world is considered where each observation ( iy  and iu ) is related to exactly one neighbor 

immediately before it and one neighbor immediately after it.  Thus, the i
th

 row of W has non-zero 

entities only in i-1 and i+1 column, for each i = 2, 3…. (n-1).  For the first row, the non-zero 

elements are in the 2
nd

 and n
th

 column while for the last row, the non-zero elements are in the n-

1
th

 and 1
st
 column.  Further, the matrix W is row standardized such that sum of elements in each 

row =1.  This matrix is termed as “one ahead and one behind.”  The second matrix is analogously 

defined as “three ahead and three behind” where each observation is related to exactly three 
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other observations behind and ahead of it.  Thus, the average number of neighbors in the first 

matrix is 2 while in the second matrix it is 6.  Kelejian and Prucha report that the results from 

hypothetical weight matrices and “real world” weight matrices are similar.  We conjecture 

similar outcomes in this case. 

The parameter associated with the non-spatial components of the model is specified as below, 

representing both positive and negative association. The choice of these values has no or very 

little bearing on the research question. 

1 2 1 2 3 40.3, 0.7, 2.0, 2.5 2.5, 2.0              

Similarly, two alternative forms of the variance covariance matrix   are used corresponding to 

an R
2
 value of roughly 0.75 and 0.6 respectively, where R

2
 is defined as the average squared 

correlation coefficient (Carter & Nagar, 1977) between yi and the mean value of yi as explained 

by the model in different experiments: 

1 =  
900 450

450 900

 
 
 

    and    2 = 
3000 2500

2500 4000

 
 
 

 

In the first case, 1 2   and the correlation between error terms 1 2 12 1 2( , ) /corr       is 0.50. 

In the second case, 1 2   and the correlation between error terms is -0.72.    

3.2 Generating Synthetic Data 

A dataset that is a realization of the spatial processes under study is needed for the purpose of 

estimation.  It should be a generated from interdependencies between variables, random 

components and the spatial interactions between them as specified in the model structure.  For 

each scenario, a different dataset is generated influenced by the parameter settings, nature and 

strength of spatial dependence, variance-covariance structure and sample size.  This procedure 

will ensure that the variation in results of different scenarios only reflects the changes in the 

scenarios rather than the randomness in the data generation process thus making comparison 

possible.  The data generation process consists of two parts, namely generating the values of the 

disturbance terms and that for the regression variables. 

3.3 Generating the values of disturbance terms 
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The process of generating spatially correlated random components starts with random draws 

from independently and identically distributed normal random variables , ( 1,2)i i   with zero 

mean and unit variance.  These values are then transformed to reduced form disturbances i  that 

are correlated across equations with zero mean and variance covariance matrix   using the 

following transformation: 

*E V   where, 1 2( , )E   , 1 2( , )V    

and * is the m x m lower triangular matrix such that 
'

* *    .  The disturbance terms, ,iu  in 

the model are then obtained by using the transformation 
1( )i iu I W    resulting in 

randomness that is correlated across space as well as across equations.  

 

3.4 Generating the values of regression variables 

The starting values for a large number of time series for the two exogenous variables 

 , 3 4,b tX x x  are independently drawn from a normal distribution with zero mean and unit 

variance.  3x  is treated as fixed over time while 4x  is assumed to grow at a rate of one percent in 

every period.  To avoid the sensitivity of results to exogenous variables, they are generated using 

the same set of random realizations in every experiment.  

Values of tY  are generated conditional on ,a tX  and ,b tX  using a reduced form autoregressive 

data generation process described as follows.  Re-writing equation (7) with a time subscript, 

substituting , 1a t tX Y    and taking expectations, we obtain: 

1 ,. . . 0t a t b b tBY T Y T X    (8)  

1

1 ,( ) .( . . )t a t b b tY B T Y T X

    (9) 

True values for tY  are generated using equation (9) for each period starting from initial values of 

0tY   from normal random variables, and exogenously generated values for the variable ,b tX .  This 

process is iterated several times to ensure that the pre-determined variable 1tY   is generated using 

the same underlying spatial process as tY .  The observed value of tY  is subsequently obtained by 
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perturbing its true values with disturbances 1 2( , )U u u
 
whose values were generated in the 

previous section. 

,t observed t tY Y U    (10) 

The results from Monte Carlo simulations are at best random.  In order to obtain sufficiently 

accurate results, a large number of repetitions is required.  The errors due to the number of 

repetitions were reduced by use of antithetic variates.  Thus, in equation (10) both positive and 

negative error terms are used to generate the observed values of Y. 

3.5 Simulation design 

Random samples are drawn from a specified distribution, and a set of data consistent with the 

model is generated.  It is then used to estimate model parameters using the FGS2SLS and 

FGS3SLS estimator.  This process is repeated several times.  The estimates are then averaged to 

obtain the expected values of parameters of interest.  The whole process is repeated for varying 

degrees of spatial dependences, sample size and the neighborhood structure to analyze the 

performance of FGS3SLS estimator under different conditions to analyze the sensitivity of the 

results to the data generation process.  The complete code for the experiments is written in the 

statistical package R (R Development Core Team, 2005). 

 

4. Results 

Monte Carlo simulation using the above parameters and synthetically generated data is 

performed for all combinations of the weight matrix W, sample size n and the spatial lag 

parameter .  500 random samples of errors are generated for each set of n,  , the neighborhood 

matrix W and the covariance matrix  .  Each vector of errors is used twice (as thetic and anti-

thetic variates) resulting in 1000 repetitions for each experiment.  This setup yields a total of 2 

values for  , 2 for W, 9 for i , 9 for i  and 3 for n resulting in 972 experiments with 1000 

repetitions for each experiment.  

The performance of the Feasible Generalized Spatial Three Stage Least Square estimator 

(FGS3SLS) was found to be superior to the Feasible Generalized Spatial Two Stage Least 

Square estimator (FGS2SLS) which in turn was found to be superior to the ordinary two stage 
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least square estimator under varying conditions.  Table 1 demonstrates the gains from using 

FGS3SLS for the parameter settings described in this paper.  The estimates from FGS3SLS have 

smaller bias and variance compared to the FGS2SLS estimator.  The gains from using the former 

are greater when the spatial correlation in disturbance terms is high, the spatial lag parameter has 

a low absolute value, the sample size is small and the neighborhood structure is less dense. 

<<insert table 1 here >> 

Given the overall superiority of the FGS3SLS estimator under different conditions, we will only 

focus on the properties of FGS3SLS in the subsequent analysis.  The simulations permit analysis 

of the impact of sample size, neighborhood density, variance-covariance structure of 

disturbances and the strength of spatial dependence on parameter estimates obtained using this 

estimator. 

 

4.1 Impact of sample size on parameter estimates 

In this section, we analyze the impact of sample size on parameter estimates using root mean 

square errors (RMSE) as a measure of performance for the FGS3SLS estimator.  An attempt is 

made to isolate the interaction effects of sample size with neighborhood density (average number 

of neighbors), variance covariance matrix of error structures, degree of spatial dependences in 

endogenous variables and spatial autocorrelation in errors.  For brevity of presentation, we 

choose one value of  and show the impact of varying sample size on RMSE of 2̂  for different 

values of .  Similarly, we choose one value of  and show the impact of varying sample size on 

RMSE of 2̂  for different values of  .  The exercise is repeated for the two variance-covariance 

matrices (see figure 1). 

<<insert figure 1 here>> 

Increasing the sample size from 100 to 250 observations had a huge impact on the RMSE of a 

parameter estimates irrespective of other control variables like neighborhood density or the 

variance covariance matrix.  However, the gains in increasing the sample size from 250 to 500 

were marginal except at extreme values of spatial dependence parameters   and  .  A large 

sample size improves the performance much more when the spatial lag parameter of the 



Performance of the FGS3SLS Estimator in Small Samples: A Monte Carlo Study 

 

12 

dependent variable is small, the spatial autocorrelation in errors is high, the number of neighbors 

is large and the variance covariance structure of error are large. 

4.2 Impact of the average number of neighbors specified in the weight matrix W  

The choice of neighborhood structure as defined by W is often decided a priori using exploratory 

data analysis or is based on the goodness of fit criteria.  This is because the data generation 

process is not known in practice and the theory behind selection of the weight matrix is weak 

(see Cuaresma, 2010). 

According to the simulations, the impact of neighborhood density on RMSE of parameter 

estimates depends on the strength of spatial dependences (  , ) as shown in figure 2.  For all 

parameter estimates except that of  , increasing the average number of neighbors increased the 

RMSE noticeably for the following two combinations of spatial dependence parameters – (a) 

extreme negative values of  and high positive , and (b) small absolute values of  and high 

positive  .  However, for small absolute values of   and extreme negative values of  , the 

RMSE actually decreased.  The estimates of  conditional on W behaved slightly differently.  

Increasing the density marginally increased the RMSE for small   irrespective of   but was 

drastically decreased for extreme negative values of   (except at high positive ).  

<< insert figure 2 here >> 

The experiments with different number of average neighbors revealed that as the structure 

becomes denser, the bias in parameter estimates increases many times.  The effect is more 

pronounced as the spatial autocorrelation in the dependent variable and error structure increases. 

An increase in the sample size consistently and greatly reduces the bias due to the increase in 

neighborhood density.  Thus, in a large sample, the increase in bias due to a denser neighborhood 

structure is marginal.  The result for estimates of 2  for different values of sample size and 

degree of spatial dependences are shown in figure 3.  Estimates of other model parameters 

behaved in similar fashion. 

<< insert figure 3 here>> 
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The simulation results suggest that the choice of neighborhood structure should not only involve 

goodness of fit criteria but also concern for increased bias in parameter estimates due to denser 

neighborhood structure. 

4.3 Estimates of   and   

The bias in the estimate of the spatial autocorrelation parameter in error terms   was analyzed 

under different sample sizes, variance-covariance structure and weight matrices conditional on 

different values of the spatial lag parameter .  Similar analysis was conducted for the estimates 

of the spatial lag parameter   conditional on   (figure 4).  The estimator does not provide a 

direct way to calculate the variance of  and therefore, it was derived computationally.  One 

point of caution is that the estimation of   requires an optimization procedure where the 

objective function may not be well defined and is susceptible to the choice of starting 

parameters.  This was not found to be the case in our experiments as the results were stable with 

respect to the choice of starting parameters.  However, it is a concern to be borne in mind while 

using the estimator. 

Estimates of  were very robust to varying degrees of spatial dependences over most of the (  ,

 ) space.  As the neighborhood density increases, there is an increase in the bias and is mostly 

independent of the value of   on which it is conditioned.  The estimator performs well at low 

and moderate degrees of spatial dependencies in endogenous variables except when there is a 

simultaneous presence of a very high spatial dependence in randomness.  Surprisingly, higher 

bias in the parameter estimate of   was accompanied by higher variances, signifying the poor 

performance of the estimator in such conditions.  

The bias and variance of   was largely independent of the values of   it was conditioned upon 

except at very high values of .  The bias increased very rapidly when its true parameter value 

increased from -0.8 to +0.8.  However, unlike , there was a clear bias-variance trade off in the 

estimates of  . 

<<insert figure 4 here>> 
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5. Conclusion 

In this paper, we analyzed the small sample properties of the limited information Feasible 

Generalized Spatial Two Stage Least Squares (FGS2SLS) and the full information Feasible 

Generalized Spatial Three Stage Least Squares (FGS3SLS) estimator for a system of 

simultaneous equations with spatial dependence in error terms and in the dependent variable. 

Given relatively few published applications of this estimator and lack of theoretical 

understanding about its behavior in small samples, this paper provides a starting point for 

analyzing the behavior of this estimator.  A Monte Carlo framework was used to explore the 

impacts of sample size, neighborhood structure, variance co-variance matrix and varying degree 

of spatial dependence parameters on the estimators’ performance.  

The FGS3SLS estimator performed better than the FGS2SLS estimator in terms of smaller bias 

and lower variance.  The gains of using the former are higher when the spatial correlation in the 

disturbance terms is high, the spatial lag parameter has a low absolute value, the sample size is 

small and the neighborhood structure is dense.  Given the superiority of the FGS3SLS estimator 

over the FGS2SLS in the simulations described in this paper, the detailed study of the impacts of 

sample size, neighborhood structure, variance-covariance matrix and degree of spatial 

dependence on estimator’s behavior that was made was limited to the FGS3SLS estimator.  

The performance of the FGS3SLS estimator drastically improved when the sample size was 

increased from 100 to 250 observations.  Increasing the sample size to 500 observations yielded 

only marginal gains.  Gains with increasing sample size are more significant when the 

heterogeneity is high, the spatial lag parameter of the dependent variable is small, the spatial 

autocorrelation in errors is high, the number of neighbors is large and the variance covariance 

structure of error is large.  The performance of the estimator was found to be sensitive to the 

value of the spatial dependence parameters.  It deteriorated with low values of the spatial lag 

parameter in the dependent variable ( ) and at extremely high values of the spatial dependence 

in the error structure (  ).  Thus, the estimator pays a premium in terms of bias and variance 

when the spatial lag is small but has huge gains as the spatial lag increases.  The estimator for   

performed well at low and moderate degrees of spatial dependencies in the endogenous variables 

except when there is a simultaneous presence of a very high spatial dependence in randomness.  

Spatial structures with higher average number of neighbors led to higher bias and variances in 
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the estimates.  The effect is more pronounced as the spatial autocorrelation in the dependent 

variable and error structure increases.  In large samples, the increase in bias due to denser 

neighborhood structure is marginal.  The results presented here are sensitive to the model 

specification, choice of the data generation process, distribution of the exogenous variable, etc.  

However, the results are useful as a comparative exercise to assess the relative changes in 

performance under different conditions and should not be taken as an absolute measure of 

performance. 

Understanding the impacts of the sample size, varying degrees of spatial dependencies, 

neighborhood structure and the error structure on the forecasted value is essential.  However, the 

importance of this work in analyzing the forecasts of spatial data and comparing with the results 

with true values was not addressed in this paper.  

Additional research is needed in order to enhance the use of this estimator in applied work.  It is 

computationally intensive and there is no software or standard code to implement this estimator.  

Efforts in this direction are very much warranted.  A useful extension would be to analyze the 

impact of increasing model complexity and choice of instruments on the performance of the 

estimator.  Further, the estimates of   are obtained from an optimization routine, where the 

objective function may have multiple optima.  In such cases, the parameter estimate of   may 

be susceptible to the choice of starting values and various techniques may be needed to insure 

that a global optimum is reached.  This makes the task more computationally demanding.  Work 

is also needed to theoretically corroborate the findings of this paper in a generalized framework.  

Over the last five decades, we have learnt a great deal about the properties of the three stage least 

squares estimator in terms of impacts of misspecification, nonlinearity, multicollinearity, etc., 

many of which have been studied through Monte Carlo simulations.  A parallel series of 

literature needs to be developed for the Feasible Generalized Three Stage Least Square estimator.  
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i  i  1  1  1  3  1  1  1  3  

-0.8 -0.8 -0.001 -0.006 0.001

-0.8 -0.4 -0.001 0.002 0.002

-0.8 0.0 -0.003 0.023 0.002

-0.8 0.2 0.001 -0.003 0.039 0.003

-0.8 0.6 -0.001 0.001 -0.008 0.106 0.009

-0.4 -0.8 -0.004 0.002 -0.014 0.249 0.033

-0.4 -0.4 -0.005 0.003 -0.016 0.301 0.047

-0.4 0.0 -0.006 0.004 -0.019 0.360 0.049

-0.4 0.2 -0.005 0.004 -0.019 0.380 0.043

-0.4 0.6 -0.009 0.007 -0.031 0.652 0.001 0.107

0.0 -0.8 -0.002 0.011 -0.009 0.328 0.108

0.0 -0.4 -0.001 0.012 -0.008 0.384 0.142

0.0 0.0 -0.001 0.010 -0.005 0.386 0.157

0.0 0.2 -0.003 0.010 -0.005 0.390 0.120

0.0 0.6 -0.019 0.013 -0.001 0.624 0.002 0.199

0.2 -0.8 -0.001 0.010 -0.006 0.232 0.001 0.152

0.2 -0.4 -0.001 0.007 -0.006 0.177 0.001 0.133

0.2 0.0 -0.001 0.006 -0.005 0.143 0.001 0.105

0.2 0.2 -0.005 0.005 -0.002 0.131 0.001 0.099

0.2 0.6 -0.029 0.004 0.012 0.098 0.004 0.001 0.089

0.6 -0.8 -0.005 0.003 -0.001 0.028 0.001 0.077

0.6 -0.4 -0.005 0.002 0.013 0.083

0.6 0.0 -0.003 0.001 -0.021 0.059

0.6 0.2 -0.005 0.001 0.002 -0.037 0.051

0.6 0.6 -0.013 0.010 -0.187 0.001 0.063

Gains over FGS2SLS

-0.8 -0.8 0.001 0.010

-0.8 -0.4 0.001 0.002 0.027

-0.8 0.0 0.001 0.001 0.003 0.042 0.001

-0.8 0.2 0.001 0.005 0.055 0.002

-0.8 0.6 0.002 0.002 0.010 0.118 0.010

-0.4 -0.8 0.007 0.003 0.018 0.250 0.053

-0.4 -0.4 0.007 0.003 0.019 0.264 0.068

-0.4 0.0 0.007 0.003 0.019 0.286 0.063

-0.4 0.2 0.009 0.004 0.019 0.299 0.075

-0.4 0.6 0.012 0.006 0.023 0.394 0.208

0.0 -0.8 0.002 0.014 -0.002 0.521 0.130

0.0 -0.4 0.003 0.014 -0.004 0.523 0.145

0.0 0.0 0.005 0.016 -0.004 0.582 0.126

0.0 0.2 0.008 0.015 -0.004 0.553 0.160

0.0 0.6 0.029 0.017 0.013 0.659 0.197

0.2 -0.8 -0.001 0.015 -0.005 0.536 0.201

0.2 -0.4 0.005 0.013 -0.005 0.489 0.129

0.2 0.0 0.014 0.011 0.513 0.095

0.2 0.2 0.017 0.010 0.008 0.508 0.101

0.2 0.6 0.049 0.011 0.031 0.643 0.116

0.6 -0.8 -0.003 0.005 0.004 0.258 0.001 0.027

0.6 -0.4 0.004 0.002 0.236 0.001 0.008

0.6 0.0 0.003 0.003 0.191 0.010

0.6 0.2 0.004 0.003 0.168 0.006

0.6 0.6 0.017 0.002 0.011 -0.057 0.001 0.002

FGS3SLS

Reduciton in Absolute Bias Reduction in Variance

Bias Variance

 

Table 1: FGS3SLS Bias and Variances for n=250, 2 , W=6, 1 0.3   , 1 2.0  , 3 2.5   



Performance of the FGS3SLS Estimator in Small Samples: A Monte Carlo Study 

 

18 

 
1  

2  
A

v
g

. 
n

o
. 

o
f 

n
ei

g
h
b

o
rs

 =
 2

 

 

 

 

A
v

g
. 

n
o
. 

o
f 

n
ei

g
h
b

o
rs

 =
 2

 

  

A
v

g
. 

n
o
. 

o
f 

n
ei

g
h
b

o
rs

 =
 6

 

 
 

Figure 1: Impact of sample size on RMSE of 2
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Figure 2: Impact of average number of neighbors on RMSE for 2  and n = 250
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Figure 3: Impact of average no. of neighbors on percentage bias of 2( 0.7)   for 1
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  

  

  

  

Figure 4: Estimates of   and  , at n=250 for 2 , average number of neighbors = 6 
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