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Abstract:  The recent upward trend in the direct costs of natural disasters is a reflection of both 

an increase in asset densities and the concentration of economic activities in hazard-prone areas.  

Although losses in physical infrastructure and lifelines are usually spatially concentrated in a few 

areas, their effects tend to spread geographically and temporally due to production chains and the 

timing and length of disruptions.  Since the 1980’s, several techniques have been proposed to 

model higher-order economic impacts of disruptive events, most of which are based on the input-

output framework.  However, there is still no consensus for a preferred model to adopt. Available 

models tend to focus on just one side of the market or have theoretical flaws when incorporating 

both sides.  In this paper, the Generalized Dynamic Input-Output framework (GDIO) is 

presented and its theoretical basis derived.  It encompasses the virtues of intertemporal dynamic 

models with the explicit intratemporal modeling of production and market clearing, thus 

allowing supply and demand constraints to be simultaneously analyzed.   Final demand is 

endogenized via a demo-economic extension to study the impact of displacement and 

unemployment post-disaster.  The key roles of inventories, expectation’s adjustment, primary 

inputs, labor force and physical assets in disaster assessment are explored and previous 

limitations in the literature are addressed.  It will be shown that the dynamic Leontief model, the 

sequential interindustry model and the traditional input-output model are all special cases of the 

GDIO framework. 
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1. Introduction 

Disasters have unique features and effects that pose challenges to traditional economic modeling 

techniques.  Most of them derive from a time compression phenomenon (Olshansky et al., 2012) 

in which after the steady-state is disrupted, instead of a gradual transition phase, an accelerated 

adjustment process (due to recovery efforts) brings the economy to a new steady-state.1  Even 

though some activities compress better than others (money flows in relation to construction), it 

creates an intense transient economic shock (non-marginal) that is spatially heterogeneous and 

simultaneous depending on the intensity of damages, the local economic structure and the nature 

and strength of interregional linkages.  As a result of the speed of disaster recovery, there is 

significant uncertainty, simultaneous supply constraints with specific forward and backward 

linkages effects due to production chronology and schedules, and behavioral changes that affect 

both composition and the volume of demand (Okuyama, 2009).  Timing is, therefore, 

fundamental in determining the extent of impacts as capacity constraints, inventories and 

production cycles vary throughout the year (see Avelino, 2017). 

In terms of economic modeling, the aforementioned features translate into a series of 

effects for which the net outcome (positive/negative) is unknown as it depends on the 

idiosyncrasies of the local economy.  In the aftermath of a disaster, the previous steady-state of 

the economy is disrupted by changes in both supply and demand.  Household displacement, 

income loss, structural changes in expenditure patterns, diminished government expending and 

reconstruction efforts imply positive and negative effects to final demand.  Industrial response to 

the latter in terms of output scheduling affects intermediate demand.  Conversely, supply may be 

internally constrained due to physical damage to capital and loss of inventory, or externally 

constrained by limited input availability for production (due to accessibility issues or disruptions 

in the production chain).  Whether the net effect in the region is positive or negative will depend 

on the characteristics of the disaster, resilience of local industries, amount of reconstruction and 

size of interregional linkages.  Spillover effects will spread supply chain disruptions and resource 

allocations for reconstruction to different regions at different times. 

Hence, modeling efforts are essential to understand the role of different constraints in the 

recovery path post-disaster and to better inform mitigation planning.  Regional industrial 
                                                           
1 E.g., a large amount of damaged assets are intensely replaced during recovery, moving the dynamics of capital 

depreciation and replacement to a new steady-state in the region or across regions. 
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linkages topologies have a key role in spreading or containing disruptions, as well as sectoral 

robustness in terms of inventories, excess capacity and trade flexibility.  Supply chain 

disruptions can have significant impacts on the financial health of firms by constraining sales, 

diminishing operating income and increasing share price volatility (Hendricks and Singhal, 

2005).  Nonetheless, most firms do not properly quantify these risks, with few developing back-

up plans for production shutdowns due to physical damage or alternative suppliers in case of 

disruptions (University of Tennessee, 2014).  Assessing the dynamics of dissemination and 

identifying crucial industrial nodes can lead to more resilient economic systems. 

As highlighted by Oosterhaven and Bouwmeester (2016), ideally, assessment of regional 

impacts should be based on an interregional computable general equilibrium (CGE) framework. 

However, as a set of such models is required to account for both short-run (when substitution 

elasticities are minimal) and long-run impacts, the cost-time effectiveness of this approach is 

usually problematic (Rose, 2004; Richardson et al., 2015).  The widely used alternative has been 

the use of input-output (IO) models due to their rapid implementation, easy tractability and 

integration flexibility with external models, which are essential in the estimation of impacts of 

post-disaster for recovery aid and planning.  The tradeoff between its CGE counterpart is more 

rigid assumptions on substitutability of goods, price changes and functional forms, which makes 

IO more appropriate for short-term analysis.  A variety of IO models have been proposed to deal 

with disruptive situations, most of them built upon the traditional demand-driven Leontief model 

(Okuyama, 2007; Okuyama and Santos, 2014).  Nevertheless, most of these models fail to 

incorporate the aforementioned constraints or do so in an indirect way that may be inconsistent 

with the IO framework (Oosterhaven and Bouwmeester, 2016; Oosterhaven, 2017). 

In this paper, a compromise is offered that encompasses the virtues of intertemporal 

dynamic IO models with the explicit intratemporal modeling of production and market clearing, 

thus allowing supply and demand constraints to be simultaneously analyzed.  The so called 

Generalized Dynamic Input-Output (GDIO) framework is presented and its theoretical basis 

derived.  It combines ideas from the Inventory Adaptive Regional IO Model, Sequential 

Interindustry Model and demo-economic models.  The key roles of inventories, expectations’ 

adjustment, primary inputs and physical assets in disaster assessment are explored and previous 

limitations in the literature are addressed.  The model provides insights into the role of pivotal 
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production chain bottlenecks, resilience of essential industries and interindustrial flow patterns 

that can guide formulation of better recovery strategies and mitigation planning. 

In the next section, a literature review of models focused on disruptive events using the 

input-output framework is presented.  Section 3 describes the basic GDIO framework and its 

demo-economic extension.  Section 4 discusses other models as special cases of the more general 

framework.  Section 5 presents a simple application and the last section offers some concluding 

comments. 

 

2. Literature Review 

Until the 1980’s, with exception of the seminal work of Dacy and Kunreuther (1969) and studies 

on the effects of nuclear warfare (Hirshleifer, 1987), modeling the impacts of disruptions has 

received limited attention from the economics literature.  Nonetheless, several natural and man-

made disasters in the last forty years have stimulated new developments in terms of methods, 

empirical analyses, interdisciplinary approaches and data availability. 

In essence, three frameworks have been applied in this endeavor: input-output, 

computable general equilibrium and econometrics.  The first two approaches take advantage of 

their general equilibrium foundations by facilitating the analysis of the ways in which industrial 

linkages transmit localized shocks to unaffected sectors in the economy, revealing important 

nodes in local production chains.  A tradeoff between the assumptions and data requirements 

creates the divide among IO and CGE: linearity and constant prices (or quantities) demand 

significant less data in the former, while more flexible functional forms in CGE leads to 

significant data requirements, especially if the parameters are to be estimated econometrically 

(for more elaboration, see Crawley and Hewings, 2015).  Most econometric approaches are 

rooted in partial equilibrium analysis, preventing the evaluation of spillover effects, but are more 

suited for forecasting.  A major drawback, nevertheless, is the infrequency and wide range of 

individual magnitudes of disaster events that may create estimation issues. 

As noted in the introduction, the IO framework has been widely used in recent years to 

model disruptive events.  Several applications have relied on the traditional static Leontief 

demand-driven model (for example WSDOT, 2008) and modeled the impact of a disruptive 
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event through exogenous shocks in final demand.  However, the assumptions underlying such a 

simple specification severely restrict its usability in disruption assessments.   First, any supply 

constraint must be introduced as a shock in final demand2 since the latter is the sole exogenous 

variable in the model.  It also implies that local input requirement coefficients are constant post-

disaster, i.e., no domestic/imported substitution effects occur.  Secondly, any disruptive impact is 

contained within the time dimension of the model due to its static nature.  Hence, inoperability 

does not accumulate intertemporally.  By construction, the model also assumes production 

simultaneity, which restricts the temporal scope of economic leakages, and perfect foresight.  

Thirdly, spatial (in both scope and scale) and temporal aggregation can bias results by ignoring 

interregional feedbacks and intra-year seasonality.  This can be significant as most of these 

unexpected events are localized in small areas and are characterized as transient phenomena 

(Donaghy et al., 2007). 

To address these limitations in dealing with constraints and their sources inside the 

framework, several extensions have been proposed.  In the static framework, in order to 

explicitly account for local supply constraints and trade post-disaster, rebalancing algorithms 

were introduced by Cochrane (1997) and Oosterhaven and Bouwmeester (2016).  Given supply 

constraints, final demand requirements and slackness conditions on regional import/exports and 

inventories, Cochrane’s algorithm iteratively rebalances the IO table.3  Oosterhaven and 

Bouwmeester’s (2016) nonlinear programming formulation minimizes information gains given 

production caps and demand conditions to determine the new steady state of the system post-

disaster.  In both models, local inoperability can only be mitigated via trade.  Koks and Thissen 

(2016)’s MRIA model also relies on a nonlinear programming formulation but instead minimizes 

production costs.  Although capacity constraints are set at the industry level, by using supply and 

                                                           
2 This workaround of transferring supply constraints to final demand, by reducing the latter in some proportion of 

the capacity restriction has been common in the literature (Oosterhaven, 2017).  Notice that it does not recognize the 

fact that local purchase coefficients might diminish as non-affected industries increase imports, thus biasing upwards 

the estimated negative impact of the disruption.  Moreover, issues arise in sectors with small final demand (e.g. 

mining) and large capacity constraints. 
3 This algorithm is implemented in HAZUS (HAZards US), a widely used software from the Federal Emergency 

Management Agency in the US, to evaluate the economic impact of floods, hurricanes and earthquakes (FEMA, 

2015). 
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use tables they allow a reduction in inoperability via local production of by-products by other 

sectors in addition to reliance on external trade.4  

Another alternative to incorporate supply constraints in the IO framework is to explicitly 

model market clearing (in a Marshallian sense).  This is done in the Adaptive Regional IO Model 

(ARIO) model (Hallegate, 2008) by modeling supply and demand conditions separately.  Each 

industry faces a production function and a series of input constraints that bound total output 

individually and create an unbalance between supply-demand.  However, the model also 

considers price effects on final demand, exports and profits that ignore the general equilibrium 

framework in which it is embedded (and more specifically the input-output framework), varying 

independently across sectors and not impacting production decisions. 

In terms of dynamics, several studies have proposed intertemporal formulations focused 

on industrial chronology and flows in order to capture disruption leakages between discrete 

periods. This is essential as production delays can have ripple effects in different industrial 

chains and remain in the system for several periods, influencing output inter-temporally. 

In dealing with the unrealistic assumption of production simultaneity in the basic IO 

model, Cole (1988, 1989) and Romanoff and Levine (1981) have introduced extensions to 

account for production timing.  The time-lagged model proposed by the former is one of the first 

studies to incorporate dynamics in disruptive events (industrial plants closure).  It assumes 

heterogeneity in the speed in which shocks reverberate in the economy due to different levels of 

inertia (lags) at different nodes in the production chain.  Therefore, lags are introduced between 

the flows in the series expansion of the Leontief inverse, reducing feedback speeds and 

multiplier magnitudes.5 

Also based on the series expansion of the Leontief inverse, the Sequential Interindustry 

Model (SIM) introduces production chronology in the IO framework (Romanoff and Levine, 

1977).  In its original specification, the reference point for production is the period in which 

orders are placed and industries’ scheduling is determined by their specific production mode: 

                                                           
4 The assumption of Leontief production functions still holds in the model which implies that increased supply of 

by-products by non-affected sectors generates overproduction of other commodities in the economy.  The authors 

use this overproduction as a measure of local inefficiency during the recovery phase. 
5 The time-lagged model has been criticized in a series of papers by Jackson et al. (1997), Jackson and Madden 

(1999) and Oosterhaven (2000), due to Cole’s assumption of a fully endogenized system, which is theoretical 

inconsistent and non-solvable.  No other disaster applications are available. 



7 

 

anticipatory, just-in-time or responsive.6  Time is discretized, assumed to be the same for all 

industries, constant through time and synchronized across sectors.  This Core SIM is not a truly 

dynamic model, since it only distributes production through time,7 and there is no structural 

change post-disaster.  Both issues were further explored in a more complete specification 

(Levine and Romanoff, 1989; Romanoff and Levine, 1990) including delivery delays, 

inventories and technology change that was never fully implemented in the disaster literature8 

due to data requirements.9  Although proposed earlier than Cole’s model, just recently it has been 

applied to disaster events by Okuyama et al. (2002, 2004). 

Given the quasi-dynamic nature of the SIM, the system’s inoperability is only partially 

captured.  In static frameworks, contemporaneous inoperability creates indirect effects intra-

temporally only, as all flows are contained within a time period.  In the SIM, inoperability is 

projected inter-temporally through production timings, i.e., intra-temporal impacts are carried 

over via production lags between time periods.  Based on the classic Leontief Dynamic model, 

the Dynamic Inoperability Input-Output Model (DIIM) proposed by Lian and Haimes (2006) 

aims at introducing a dynamic framework for disaster assessment that bridges intra-temporal and 

inter-temporal inoperability.10  It modifies the Dynamic Leontief model by replacing the capital 

formation matrix by a resilience matrix that represents the speed with which the production gap 

post-disaster is closed.  Instead of modeling a growth path between steady-states, the DIIM 

reflects the spread of capacity constraints in the system from initial disruption until full 

restoration. 

The connection between intra-temporal and inter-temporal inoperability is achieved by 

acknowledging that the impact of current inoperability creates contemporaneous supply 

constraints that also influence the next period, hence accounting for both effects.  Note that the 

                                                           
6 See complete description of the model in Romanoff and Levine (1977, 1981). 
7 If one accumulates all temporal flows from the Core SIM, they amount to the same output of the traditional IO 

Model.  In fact, the IO model is a special case of the SIM when all industries are just-in-time. 
8 Although Okuyama et al. (2004) present this model in their paper, the actual model implemented is the traditional 

SIM.  Okuyama and Lim (2002) implement a toy model of the traditional SIM with inventories. 
9 Another important critique of the SIM is the assumption of perfect knowledge for production scheduling (Mules, 

1983). An exercise is performed in Okuyama et al. (2002) to relaxed this assumption, but there is no further 

application of this extension.  
10 The DIIM is the dynamic version of the Inoperability Input-Output Model (IIM) (Santos, 2003; Santos and 

Haimes, 2004).  Despite its wide application in the literature, it offers no methodological advances in relation to the 

traditional IO model.  In fact, as shown in Dietzenbacher and Miller (2015) and Oosterhaven (2017), it is just a 

normalization of the Leontief model, so no additional insights are gained by applying it. 
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DIIM schedules a production level for the next period that deviates from current output 

depending on the contemporaneous mismatch between supply-demand (weighted by the 

recovery speed).  In this sense, all industries operate in anticipatory mode, using the previous 

period’s final demand and production unbalance as expected output level.  There is still no 

explicit modeling of the unbalance between supply and demand and a proportional rationing rule 

is implicitly assumed to redistribute reduced output. 

Barker and Santos (2010) extended the DIIM to include finished goods inventories and 

their impact on the recovery process.  As inventories serve as a way to smooth volatility in the 

industry, they distinguish between overall inoperability in the system, which accounts for 

indirect constraints from production chain linkages, and sector-specific inoperability that 

depends on inventories.  Although the impact of pre-disaster inventories is assessed, there is no 

modeling of inventory formation, nor the impact of material and supply (M&S) inventories in 

reducing inoperability from the supply perspective.11 In contrast, the Inventory-ARIO model 

(Hallegate, 2014), the dynamic version of the ARIO model, incorporates M&S inventories 

formation and depletion.  It is based on the premise that all industries seek to maintain a target 

level of these inventories similar to “order-point systems” used in managing inventories prior to 

the 1970s (Ptak and Smith, 2011).  The issue with such approach is that modern inventory 

management relies on “material requirement planning” systems that consider the full supply 

chain conditions when a firm re-orders inputs, not only its own inventory position (Ptak and 

Smith, 2011).  Besides carrying the same theoretical inconsistency on price changes from the 

ARIO model, several ad hoc assumptions on elasticities, inventory levels and other behavioral 

parameters are required.12 

Another alternative dynamic framework is the use of regional econometric IO models 

(REIM) for disaster analysis.13  The advantage of these models is their forecast capability in 

terms of structural linkages, which allows implicit coefficient changes, intertemporal effects due 

                                                           
11 Inoperability can arise from capacity constraints (physical damage) or inputs constraints (disruption in the 

backward production chain).  The Inventory DIIM mitigates the former type of inoperability by embedding finished 

goods inventories in the model, but does not account for materials and supplies inventories.  Notice that in a 

dynamic framework these stocks are not the same intertemporally, since they are used at different timings. 
12 In a recent study comparing the ARIO, MRIA and a CGE model for the same event (flooding in the Po River 

basin, Italy) the MRIA outperformed the ARIO model with results closer to those of the CGE run (Koks et al., 

2016). 
13 For a complete description of REIM models, see Conway (1990) and Israilevich et al. (1997). 
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to its difference equations structure and nonlinear reaction to given external shocks.  An 

application to the impacts of the 1993 Mississippi Flood in Iowa can be found in Hewings and 

Mahidhara (1996).  Major issues of such approach, however, are the data requirements to build 

the model, the adjustment functions do not model transition paths, causality is missing in most of 

the dynamic equations and there is an absence of theoretically grounded feedbacks and 

constraints in the model’s workflow (Donaghy et al., 2007).  

An important critique to all current dynamic models is time discretization and the impact 

of such assumption in disaster studies.  Donaghy et al. (2007) argue that given the transient 

nature of these shocks and the fact that their duration is usually shorter than the model’s time 

step, there is a temporal aggregation bias.   The authors propose a Continuous-Time REIM 

model that transforms the system of nonlinear difference equations from a REIM to a system of 

nonlinear differential equations.  It allows a consistent way of modeling both stocks and flows, 

introduces an explicit functional forms for recovery processes, extraction of regional purchase 

coefficients at any point and, once estimated, the model can be solved for any time interval.   

Still, data requirements and costs are a major hurdle in implementing REIM models. 

In terms of space, several models have captured multiregional feedbacks using a 

traditional interregional IO framework (Okuyama et al., 1999; Sohn et al., 2004; Richardson et 

al., 2014).  While the spatial aggregation issue of IO models is usually addressed by projecting 

results at finer geographic units; for example, Yamano et al. (2007) apply modified location 

quotients to disaggregate an IO table from prefecture level to district level in Japan.  The 

economic importance of particular districts and their vulnerability after disruptive events can, 

then, be assessed to reveal imbalances in first and higher order effects. 

Natural disasters also tend to change expenditure patterns both in the affected region (due 

to layoffs, reduced production, governmental assistance programs) and outside (relief aid).  

These have been incorporated in Okuyama et al. (1999) and Li et al. (2013), but the main issue is 

to properly identify and quantify such behavioral changes.  Another important challenge is the 

application of a systems approach to disaster modeling, i.e., the integration of regional macro 

models with physical networks (transportation, utilities, etc.) that operate at different scales and 

frequencies.  There are temporal mismatches between low frequency economic models (monthly, 

quarterly, yearly basis) and high frequency physical networks (day, hourly intervals), as well as 
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spatial mismatches in terms of systems boundaries and granularity (economic models usually 

defined over administrative boundaries at macro level vs micro level larger/smaller networks).   

Efforts in integrating these include the Southern California Planning Model (Richardson et al., 

2016) and the National Interstate Economic Model (Richardson et al., 2014) combining a MRIO 

with transportation networks and Rose and Benavides (1998) considering electricity supply. 

 Finally, another important factor, not considered in any of the available models in the 

literature, is the role of seasonality in the economic structure.  Although some sectors have more 

stable production structures over the course of a year, the bias of using annual multipliers in 

seasonal sectors such as agriculture can be significant (Avelino, 2017).  Hence, fluctuations in 

production capacity intra-year have a significant impact on the magnitude and extension of 

impacts by affecting inventory levels and sectoral adaptive response.  

In sum, several alternatives have been proposed but none has been able to fully and 

consistently incorporate the constraints created by natural disasters.  The ARIO model presents 

an advance in explicitly modeling supply-demand in a dynamic context, however several 

theoretical issues were noted. Inventories, when incorporated, usually focus on one type only and 

the concept of production scheduling has seen limited application.  Also, seasonality 

considerations and demographics dynamics post-event have been largely absent in the literature.  

The next section introduces a new model that departs from the Inventory-ARIO model and 

combine the aforementioned points in a consistent and theoretically sound way in order to 

resolve issues of inter and intratemporal dynamics, seasonality, inventory formation, 

demographics and demand-supply constraints. 

 

3. Methodology 

When dynamics are introduced in IO analysis, the economic system becomes a combination of 

intratemporal flows and intertemporal stocks.  The latter are key to exploiting these dynamics 

and essential to fulfill both reproducibility (conditions for production in the next period) and 

equilibrium conditions (market clearing) across time periods.  Inventories assure irreversibility of 

production (i.e., inputs need to be available before output is produced) and the feasibility of free 

disposal in a consistent accounting sense (by absorbing unused inputs/outputs) (Debreu, 1959).  
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Therefore, as echoed by Aulin-Ahmavaara (1990), a careful definition of flows and stocks is 

paramount to avoid theoretical inconsistencies in the model. 

Following the past literature (Leontief, 1970; Romanoff and Levine (1977); ten Raa, 

1986), time is discretized into intervals 𝑡 ∈ Τ, Τ⊃ ℤ, of length ℎ.  The discretization of a 

continuous process (production), requires that any flow 𝐙𝑖𝑗 occurring during the length ℎ be 

time-compressed, as ∄ 𝐙𝑖𝑗(𝑡
∗),∀𝑡∗  | 𝑡<𝑡∗<𝑡+1.  Moreover, since the production process 

per se is not explicitly modeled, production begins and ends simultaneously and synchronously 

within ℎ for all industries and output is sold at the end of the period to final demand or 

inventories (stocks).14 

Flows and stocks need to be organized in a certain way in order to comply with 

neoclassical assumptions on production sets that are time-relevant.  If production is to occur in 

period 𝑡, irreversibility requires that all required inputs be available in advance, therefore input’s 

purchases occur in 𝑡−1.  Note that the discretization displaces all interindustrial flows that 

would occur within ℎ to a single purchase event in the previous period, i.e., industries cannot 

purchase inputs during production. In addition, free disposal requires the existence of 

inventories, so that unused materials and finished goods can be consistently accounted for and 

transferred intertemporally. 

Based on these assumptions, the length ℎ can be divided into a sequence of events that 

start with the formation of supply from production and end with demand being realized, markets 

cleared and goods allocated, thus creating the necessary conditions for production in the next 

period.15  An overview of the model is presented in figure 1.  First, production takes place with 

inputs purchased in 𝑡−1 at a level that depends on current conditions (inventories, available 

assets, labor and scheduled output).  At the end of the period, all industries end production and 

supply is formed (see section 3.1).  Final demand for the period is realized and a market clearing 

process occurs determining inventories of finished goods and imports for final demand.  Then, 

intermediate demand is generated according to expectations of final demand for 𝑡+1 and 

production mode in each industry (see section 3.2). A market clearing process follows.  

                                                           
14 This includes both finished and work-in-progress goods. 
15 It follows from ten Raa (1986): all outputs for the period are assumed to form together at the end of ℎ. 
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Inventories of finished goods and imports for intermediate demand create the conditions for 

production in the next period (see section 3.3). 

 

Figure 1. Generalized Dynamic Input-Output Model (GDIO) Overview 

 

The generic formulation of the GDIO model is detailed in figure 1 and Appendices 1 and 

2,16 so no specific functional forms are presented where there is flexibility (although examples 

are provided).  Assume an economy with 𝑛 industries and 𝑇 production periods of length ℎ.  An 

                                                           
16 The standard IO notation is used in this paper. Moreover, matrices are named in bold capital letters, vectors in 

bold lower case letters (except inventories denoted by 𝐈) and scalars in italic lower case letters.  The Greek letter 𝛊 
(iota) denotes a unitary row vector of appropriate dimension.  Finally, a hat sign over a vector indicates 

diagonalization, a prime sign transposition, × standard multiplication and ⊗, ⊘ indicate element-wise 

multiplication and division respectively. 
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industry 𝜇∈1,…,𝑛 and time period 𝑡∈1,…,𝑇 are taken as reference points for expositional 

purposes. 

 

3.1. Supply Side 

It is imperative to distinguish between a local direct input requirement matrix (𝐀) and a proper 

technical coefficient matrix (𝐀), as the terminology has often been indiscriminately used in the 

literature.  The former is derived from locally purchased inputs only, while the latter from all 

inputs required for production, both local and imported, thus reflecting the structure of a Leontief 

production function.  Local direct input requirement matrices change when regional purchase 

coefficients (RPC) vary since 𝐀(𝑡)=𝐑𝐏𝐂(𝑡)⨂𝐀, i.e., when there is a change in the share of 

domestic/external suppliers.  This is quite frequently the case in disaster situations as local 

supply plunges.  Conversely, technical coefficient tables are stable and may only change due to 

seasonality – if intra-year tables are used (see Avelino, 2017) – or due to the adoption of 

alternative production technologies, the choice of which might depend on the availability of local 

supply.17 

In contrast to traditional IO specifications, the Leontief production function is extended 

to include primary inputs (𝐥) and assets/capital (𝐤), besides industrial inputs (𝐙).  This allows for 

the introduction of supply constraints due to limited input availability, physical damage to capital 

or displacement of the workforce.  Then, production capacity in industry 𝜇 is given by available 

industrial inputs, and the coefficients 𝐚𝜇
L(𝑡) and 𝐚𝜇

K(𝑡), which reflect primary inputs and assets 

requirements per unit of output respectively.18 

Total available industrial inputs from industry 𝑖 for production of industry 𝜇 at time 𝑡 is 

the sum of locally purchased inputs (𝐙A), imports (𝐌I) and materials and supplies inventories 

(𝐈M) from the previous period: 

𝐙𝑖𝜇
T(𝑡)=𝐙𝑖𝜇

A(𝑡)+𝐌𝑖𝜇
I(𝑡)+𝐈𝑖𝜇

𝑀(𝑡−1)     ∀𝑖 (1) 

 

                                                           
17 Technology choice with constraints could be modeled using Duchin and Levine’ (2011) framework. 
18 E.g., suppose an industry 𝜇 relies on a 10,000 sqft factory to produce $10 million of output. Given the traditional 

linearity assumption, 𝐚𝜇
K(𝑡)=103 sqft/million $.  In this base model, labor force and capital are exogenous to the 

system. The former is endogenized in section 3.5. 
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Given available industrial inputs, primary inputs and assets/capital, industries produce in 

the current period following a Leontief production function, up to a total potential output 𝐱𝜇
A(𝑡): 

𝐱𝜇
A(𝑡) =𝑓(𝐙T,𝐥,𝐤)=min{

𝐙1𝜇
T(𝑡)

𝐀1𝜇(𝑡)
,…,
𝐙𝜇𝜇
T(𝑡)

𝐀𝜇𝜇(𝑡)
,…,
𝐙𝑛𝜇
T(𝑡)

𝐀𝑛𝜇(𝑡)
,
𝐥𝜇(𝑡)

𝐚𝜇L(𝑡)
,
𝐤𝜇(𝑡)

𝐚𝜇K(𝑡)
} (2) 

 

Note that the only reason for 𝐀𝑖𝑗(𝑡−1)≠𝐀𝑖𝑗(𝑡) is a change in production technology 

as noted earlier.  If regional purchase coefficients change from 𝑡−1 to 𝑡, they may not affect 

𝐀𝑖𝑗(𝑡). 

The actual total output 𝐱𝜇
A(𝑡) depends on the scheduled total output for the period 𝐱𝜇

S(𝑡) 

(to be discussed in more detail) and any available inventory of finished goods for intermediate 

demand 𝐈𝜇
FI from the last period (inventories of finished goods for final demand 𝐈𝜇

FF were already 

embedded in 𝐱𝜇
S(𝑡)): 

𝐱𝜇
A(𝑡)=min {𝐱𝜇

A(𝑡),   𝐱𝜇
S(𝑡) −𝐈𝜇

FI(𝑡−1)} (3) 

 

After production is completed, unused inputs enter the stock of materials and supplies 

inventories (𝐈M) at period 𝑡.  It is assumed that imported inputs are used first in the production 

process and then local inputs are consumed.19  In addition, note that 𝐈𝑖𝜇
M(𝑡)≥0, although ∆𝐈𝑖𝜇

M(𝑡) 

can be either positive or negative: 

𝐈𝑖𝜇
M(𝑡)=[𝐙𝑖𝜇

T(𝑡)]−[𝐀𝑖𝜇(𝑡)×𝐱𝜇
A(𝑡)]    ∀𝑖 (4) 

 

3.2. Demand Side 

On the demand side, an exogenous final demand vector20 (𝐟𝜇(𝑡)) and endogenous intermediate 

demands (𝐙𝜇𝑗
R(𝑡)) are locally supplied by 𝐱𝜇

A(𝑡) and any available finished goods inventory.  It is 

assumed that there is non-substitutability between finished goods for final demand and finished 

goods for intermediate demand (analogous to the use of the Armington assumption for local 

versus imported goods in most CGE models), although there is perfect substitution of the latter 

                                                           
19 In this way, there is no changes in inventory for external industries. 
20 Final demand can be fully endogenized in 𝐀 or partially endogenized by linking labor income to household 

consumption, so that the production level directly influences household expenditures (see section 3.5). 
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among industries.21  The amount of 𝐱𝜇
A(𝑡) destined for each type of demand is determined by the 

scheduled total output 𝐱𝜇
S(𝑡) and scheduled demands 𝐙𝜇𝑖

S(𝑡) ∀𝑖, 𝐟𝜇
S(𝑡) that were set when 

purchasing inputs in 𝑡−1.  In the case when 𝐱𝜇
S(𝑡)≠𝐱𝜇

A(𝑡), a rationing scheme 

𝐫(𝑡) | ∑𝐫𝑖(𝑡)𝑖 =1 must be applied (Bénassy, 2002).  It can reflect a uniform or proportional 

rationing, or an industrial prioritization, for example considering the production chronology in 

the sequential interindustry model and prioritizing supply to those flows closer to final demand 

(Li et al., 2013; Hallegate, 2014).  Notice that it is still possible to model this imbalance between 

supply and demand in an input-output framework as long as 𝑡 is not too large, as prices may not 

be able to adjust rapidly.  The rationing rule is constrained by: 

𝐱𝜇
A(𝑡)=∑ 𝐙𝜇𝑖

S(𝑡)×𝐫𝜇(𝑡)

𝑖

+𝐟𝜇
S(𝑡)×𝐫𝜇(𝑡) (5) 

Given the exogenous final demand 𝐟𝜇(𝑡), the actual demand supplied locally (𝐟𝜇
A(𝑡)) 

depends on finished goods produced in the period and any inventory from the previous period: 

𝐟𝜇
A(𝑡)=min(𝐟𝜇(𝑡) ,𝐟𝜇

S(𝑡)×𝐫𝜇(𝑡)+𝐈𝜇
FF(𝑡−1)) (6) 

 

In the case where local supply is insufficient for final demand, imports are required. 

Imports can be assumed to be sufficient to attend the remaining final demand, or they can be 

assumed to have a constraint or they can be endogenized in a multiregional setting, where firms 

produce to satisfy both local and external final demand.  In the latter case, spatio-temporal 

disruption spillover effects can be assessed.  In this single region setting, we assume an external 

import constraint 𝐓𝑖
FD(𝑡) that determines how much trade flexibility there is for finished goods 

for final demand in the external industry 𝑖.22 

𝐦𝜇
FD(𝑡)=min(𝐟𝜇(𝑡)−𝐟𝜇

A(𝑡),𝐓𝜇
FD(𝑡) ) (7) 

 

Sectors that can hold finished goods’ inventories23 update their stocks: 

                                                           
21 Thus the existence of two types of finished goods inventories: 𝐈𝜇

FF(𝑡) and 𝐈𝜇
FI(𝑡) respectively. 

22 In case there is an upper bound to imports, final demand not supplied in some sectors can be accumulated to next 

period (e.g., construction demand), reflecting a backlog in orders: 𝐟𝜇(𝑡+1)=𝐟𝜇(𝑡+1)+[𝐟𝜇(𝑡)−𝐟𝜇
A(𝑡)−

𝐦𝜇
FD(𝑡)]. 

23 See section 3.6 for notes on inventories. 
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𝐈𝜇
FF(𝑡)=𝐟𝜇

S(𝑡)×𝐫𝜇(𝑡)+𝐈𝜇
FF(𝑡−1)−𝐟𝜇

A(𝑡)  (8) 

 

Next, industries form expectations regarding final demand in the next period in order to 

purchase the required inputs at 𝑡.  They do so by means of an expectation function E[𝐟𝜇(𝑡+

1)| info], whose form is to be defined by the modeler, and may include an inventory strategy that 

varies according to the uncertainty in the system.24  At this point, the GDIO intersects with the 

SIM, allowing sectors to behave as anticipatory, responsive or just-in-time (JIT).  Anticipatory 

industries forecast final demand and, thus, their expectation function may or may not match the 

actual final demand in the next period.  Just-in-time industries have a particular case in which 

E[𝐟𝜇(𝑡+1) | info,JIT]=𝐟𝜇(𝑡+1), as they produce according to actual demand next period.  

Finally, responsive industries react to orders placed in previous periods (for a discussion on this 

terminology see Romanoff and Levine, 1981).25 

The required output for 𝑡+1 (𝐱R(𝑡+1)) is determined by its expected final demand via 

the Leontief model (Eq. 9).  After accounting for any labor or capital constraints (Eq. 10), and 

any available material and supplies inventory, industries determine the total intermediate input 

requirements in the period 𝐙𝑖𝜇
R(𝑡) (that includes both local and imported goods) (Eq. 11).26 

𝐱R(𝑡+1)=(𝐈−𝐀(𝑡))
−1

[E[𝐟(𝑡+1) | info,mode]−𝐈FF(𝑡)] (9) 

 

𝐱𝜇
R(𝑡+1)= min(𝐱𝜇

R(𝑡+1),𝐥𝜇(𝑡)𝐚𝜇
L(𝑡)⁄ ,𝐤𝜇(𝑡)𝐚𝜇

K(𝑡)⁄ ) (10) 

 

⟹    𝐙𝑖𝜇
R(𝑡+1)=𝐀𝑖𝜇(𝑡)×𝐱𝜇

R(𝑡+1)−𝐈𝑖𝜇
M(𝑡)    ∀𝑖 (11) 

 

                                                           
24 Such strategy could be included either as deterministic (see Hallegate, 2014) or stochastic component. 
25 An example of a SIM formulation with a simple inventory formation mechanism sensitive to the uncertainty in the 

system is:  

E[𝐟𝜇(𝑡+1)| info,mode]={

𝐟𝜇(𝑡) +𝜎×[𝐟𝜇(𝑡)−𝐟𝜇
A(𝑡)] ,if anticipatory

𝐟𝜇(𝑡+1)+𝜎×[𝐟𝜇(𝑡)−𝐟𝜇
A(𝑡)],if just in time

𝐟𝜇(𝑡−1)+𝜎×[𝐟𝜇(𝑡)−𝐟𝜇
A(𝑡)],if responsive

 

where the adjustment parameter 𝜎 reflects the reaction of the sectors to such uncertainty. 
26 If an industry is just-in-time, for the model to be consistent with perfect foresight under discretization, technical 

coefficients and local purchase coefficients in Eq. 9-11 would be indexed 𝑡+1. 
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Each industry then attempts to purchase its required inputs from other industries in the 

economy.  Input supply of industry 𝑖 to industry 𝜇 depends on the scheduled production and 

inventory of finished goods for intermediate demand of 𝑖.  Since there is perfect substitutability 

of finished goods for intermediate demand among sectors, an inventory distribution scheme 𝐝(𝑡) 

is required to allocate any available inventories between industries that are undersupplied.  In it 

simplest form, it can distribute equally within those demands that exceed current supply, or it can 

prioritize certain industries.  The actual amount of inputs purchased locally is given by: 

𝐙𝑖𝜇
A(𝑡+1)=min(𝐙𝑖𝜇

R(𝑡+1),𝐙𝑖𝜇
S(𝑡)×𝐫𝑖(𝑡)+𝐈𝑖

FI(𝑡−1)×𝐝𝑖(𝑡))    ∀𝑖 (12) 

 

In case local supply is insufficient for intermediate demand, imports are required.  

Besides possible trade constraints, for consistency, the production modes considered previously 

need to be accommodated.  In this single region exposition, the lag in production for anticipatory 

industries and foreign inventories is embedded in the constraint 𝐓𝑖𝜇
I(𝑡) that provides import 

flexibility.27  In a multiregional framework, external adjustments are explicitly modeled in the 

other region. 

𝐦𝑖𝜇
I(𝑡+1)=min(𝐙𝑖𝜇

R(𝑡+1)−𝐙𝑖𝜇
A(𝑡+1),𝐓𝑖𝜇

I(𝑡))   ∀𝑖 (13) 

 

Inventories of finished goods for intermediate demand are updated, allowing free disposal 

for industries that cannot hold inventories: 

𝐈𝜇
FI(𝑡)={

∑ 𝐙𝜇𝑗
S(𝑡)×𝐫𝜇(𝑡)

𝑗

+𝐈𝜇
FI(𝑡−1)−∑ 𝐙𝜇𝑗

A(𝑡+1)

𝑗

 ,  if μ can hold inventories

0          ,    o.w.

 (14) 

 

3.3. Production Scheduling for the Next Period 

Finally, given the amount of inputs effectively purchased, industries determine the production 

schedule for the next period:28 

                                                           
27 This constraint can be endogenized. A simple example would be a logistic function 𝐓𝑖𝜇

I(𝑡)=𝑓(𝛼,𝑘)=

(𝛼𝑖×𝐌𝑖𝜇
I(0))(1+𝑒𝑖

−𝑘𝑖𝑡)⁄ , where 𝛼𝑖 indicates the amount of underutilized external capacity and 𝑘𝑖 an industry 

specific speed of production increase.  𝐓𝑖𝜇
I(𝑡) can also be a constant number that represents external inventories. 

28 See footnote 26 regarding the time indexes for JIT industries. 
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𝐱𝜇
S(𝑡+1)=min{

𝐙1𝜇
T(𝑡+1)

𝐀1𝜇(𝑡)
,…, 

𝐙𝜇𝜇
T(𝑡+1)

𝐀𝜇𝜇(𝑡)
,…, 

𝐙𝑛𝜇
T(𝑡+1)

𝐀𝑛𝜇(𝑡)
,
𝐥𝜇(𝑡)

𝐚𝜇L(𝑡)
,
𝐤𝜇(𝑡)

𝐚𝜇K(𝑡)
} (15) 

 

𝐙𝑖𝜇
S(𝑡+1)=𝐀𝑖𝜇(𝑡)×𝐱𝜇

S(𝑡+1)   ∀𝑖 (16) 

 

𝐟𝜇
S(𝑡+1)=min(E[𝐟(𝑡+1) | info,mode], 𝐱𝜇

S(𝑡+1)− ∑ 𝐙𝜇𝑗
S(𝑡+1)

𝑗

) (17) 

 

These create the necessary conditions for production in the next period.  Note that the 

disaster significantly impacts anticipatory industries, since they base decisions on the level of 

future production on previous final demands.  Inventories, thus, have an essential role in 

smoothing production mismatches due to asymmetric information.  

Regional purchase coefficients for the period are, therefore, implicitly determined as a 

function of local supply capacity.  The assumption of price stability is adequate in disruptions 

arising from unexpected events, as prices are slower to adjust.  Also, if the analysis is performed 

in a small region, the assumption of price taking can be effective. 

 

3.4. Recovering the Input-Output Table for the period 

Finally, an input-output table can be extracted in each time period according to figure 2.  Most of 

the vectors are determined directly from the previous equations.  Interindustrial flows are 

determined by 𝐙(𝑡)=(𝐀(𝑡)×𝐱A(𝑡))−𝐌I(𝑡), as imported inputs are consumed first.  Hence, 

total change in inventories is derived as: 

∆𝐈(𝑡)={[𝐙(𝑡+1)+𝐈M(𝑡)]×𝛊+𝐈FI(𝑡)+𝐈FF(𝑡)}

−{[𝐙(𝑡)+𝐈M(𝑡−1)]×𝛊+𝐈FI(𝑡−1)+𝐈FF(𝑡−1)} 
(18) 



19 

 

 

Figure 2. Input-Output Table from GDIO 

 

3.5. Induced Effects: Demo-economic GDIO 

The composition and mix of final demand are usually affected during the recovery period due to 

displacement of households, changes in income distribution, financial aid, government 

reconstruction expenditures and investment in capital formation.  Most studies model final 

demand change exogenously with a recovery function that gradually returns it to the pre-disaster 

conditions (Okuyama et al., 1999; Li et al., 2013), and a few attempt to endogenize it in the core 

modeling framework by closing the system regarding households (Bočkarjova, 2007). 

However, notice that the simple endogenization of households to estimate induced effects 

implies strong assumptions.  It assumes a linear homogeneous consumption function, i.e., there is 

a constant proportional transmission of changes in income to/from changes in consumption, that 

all employed individuals have the same wage and consumption pattern (consumption of 

unemployed individuals is exogenous) and it ignores the source of new workers (Batey and 

Weeks, 1989; Batey et al., 2001).  Of particular interest for disaster analysis is the fact that Type 

II multipliers artificially inflate induced effects by excluding the expenditure of workers that are 

unemployed in the region.  As highlighted by Batey (2016), by ignoring the consumption of 
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unemployed individuals, any change in labor requirements results in a significant change in the 

level of final demand as new hires suddenly “enter” the local economy.  Thus, in negative 

growth scenarios this technique overstates the impact of the regional decline.  Further, there is 

the additional problem, noted by Okuyama et al. (1999) that households may delay purchases of 

durable goods in the aftermath of an unexpected event, confining expenditures to immediate 

needs. 

 A way to mitigate these issues is to build upon the demo-economic framework that has 

been developed in the last thirty years.  These integrated (demo-economic) models attempt to 

relax some of the previous assumptions by explicitly considering indigenous and in-migrant 

wages and consumption responses, as well as unemployment, social security benefits and 

contractual heterogeneity (van Dijk and Oosterhaven, 1986; Madden, 1993). 

Therefore, we extend the GDIO model through a demo-economic framework to capture 

part of the change in level/mix post-disaster and its implication in terms of induced effects.  We 

focus on the impact of displacement, unemployment and shifts in income distribution and 

expenditure patterns between households within the final demand.  The other components of 

final demand are still considered to be exogenous (𝐟O) and reconstruction demand is treated as an 

external shock (𝐯).29  We simplify Model IV proposed in Batey and Weeks (1989) by 

aggregating the intensive and extensive margins.  Hence, in its traditional single-region version, 

the following framework is used:30 

 

(

𝐈−𝐀 −𝐡c
E −𝑠×𝐡c

U

−𝐡r
E 𝟏 𝟎

𝐚L×𝛒 𝟎 𝟏

)(
𝐱A

𝑥H
E

𝑢

)=(
𝐟A

𝑓𝐻
𝑙T
) (19) 

 

where 

                                                           
29 In many REIMs, state and local government expenditures are assumed to be endogenous with the revenues 

coming from a variety of direct and indirect taxes.  After an unexpected event, this relationship might be uncoupled 

as disaster relief, funded by the federal government, pours into the region.  Further, the allocation of these funds is 

likely to be different from the “average” portfolio of state and local government expenditures. 
30 We use this simplified version for expositional purposes only.  Empirical applications should include a further 

demographic disaggregation, considering the amount of individuals displaced and the expenditure pattern change of 

those rebuilding. 
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𝐡c
E: is a column vector (𝑛×1) of employed households’ expenditure pattern 

𝐡c
U: is a column vector (𝑛×1) of unemployed households’ expenditure pattern 

𝐡r
E: is a row vector (1×𝑛) of wage income form employment coefficients 

𝐚L: is a row vector (1×𝑛) of employment/output ratios 

𝛒: is a column vector (𝑛×1) of probabilities indicating the likelihood of previously 

unemployed indigenous workers filling opened vacancies 

𝑠: unemployment benefits 

𝑥𝐻
𝐸: total employed household income 

𝑓𝐻: income from exogenous sources to employed households 

𝑢: unemployment level 

𝑙T: labor supply 

This extension is implemented as shown in figure 3 for a single region (see also 

Appendix 3).  Total labor supply 𝑙(𝑡) is determined endogenously as a fixed share 𝜏 of the 

current resident population 𝑝(𝑡), which in itself depends on total net migration (𝑛(𝑡)) for the 

period, plus any external labor 𝑙E(𝑡).31 

𝑝(𝑡)=𝑝(𝑡−1)−𝑛(𝑡) (20) 

 

𝑙T(𝑡)=𝜏×𝑝(𝑡)+𝑙E(𝑡) (21) 

 

Note that total labor supply constrains production in Eq. 2 by distributing it among the 

industries so that 𝐥=𝑙T×𝐥(0)×(𝛊×𝐥(0))−1.  Once the actual total output of industry (𝐱A) is 

determined, total employment for the period is estimated by Eq. 22, and total final demand from 

employed residents by Eq. 23.  Total unemployment determines the amount of final demand for 

these households (Eq. 24). 

𝑙𝐴(𝑡)=𝐚L×𝛒×𝐱A(𝑡) (22) 

                                                           
31 In a multiregional specification, external labor availability would be bounded by unemployed individuals in other 

regions.  Also, if housing data is available, net migration can be endogenous: the amount of in- (out-)migration as a 

proportion 𝜑 of added (lost) residential squared footage in the previous period (𝑛(𝑡)= 𝜑∗∆𝑠𝑞𝑓𝑡RES(𝑡−1)). 
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𝐟HE(𝑡)=𝐡c
E×(𝐡r

E×𝛒×𝐱A(𝑡)+𝑓𝐻(𝑡)) (23) 

 

𝐟HU(𝑡)=𝑠×𝐡r
U×(𝑙T(𝑡)−𝑙A(𝑡)) (24) 

 

Then, total final demand for the period is estimated by combining resident households’ 

expenditures, other final demand components (exogenous) and reconstruction stimulus 

(exogenous).  The new final demand enters back into the base model in Eq. 6. 

𝐟(𝑡)=𝐟HE(𝑡)+𝐟HU(𝑡)+𝐟O(𝑡)+𝐯(𝑡) (25) 

 

 

Figure 3. GDIO with Induced Effects 
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This new specification, however, cannot be solved in the same fashion as the basic GDIO 

model.  Recall that the SIM assumes that, in any period, JIT and responsive industries have 

perfect information on current and future final demands.  When the latter is fully exogenous (as 

in the basic GDIO), this requirement is easily satisfied.  In the demo-economic extension, 

however, the household’s final demand is endogenous and an iterative correcting approach is 

necessary.  The SIM assumption is satisfied by reiterating periods in which the expected final 

demand and the actual final demand differ for responsive and JIT industries.  For instance, at the 

first iteration of period 𝑡, expected final demand for these industries is set to a prior (the pre-

disaster household’s final demand) in Eq. 9 and the model is solved until 𝐟(𝑡+1) is calculated 

via Eq. 25. If there is a mismatch between E[𝐟𝜇(𝑡+1) | info] and 𝐟𝜇(𝑡+1) for 

∀𝜇 | JIT or Responsive, the prior is updated to 𝐟𝜇(𝑡+1) and period 𝑡 is reiterated. The iteration 

halts when E[𝐟𝜇(𝑡+1) | info]=𝐟𝜇(𝑡+1)  and the model proceeds.32 

 

3.6. A Note on Inventories 

First, recall that it is assumed that besides relative prices, nominal prices do not change 

intertemporally.  If they did, it would be necessary to account for holding gains/losses in 

inventories from period to period.  Secondly, service sectors are assumed not to hold any 

finished goods inventory.  It could be argued that they hold work-in-progress inventories (in case 

of consulting, entertainment, etc.), but it is assumed that these can be compartmentalized and 

produced in each time period.  Unless ℎ is very short (say, a day), one would expect finished 

services to be delivered in each time period.  

Finally, the concept of partitioning transactions adopted in the System of National 

Accounts, which directly translates to the definition of distribution sectors (retail, wholesale and 

transportation) in the IO framework, needs to be accounted for when defining inventories.  

Transactions of retailers, wholesalers and transportation are recorded as their respective margins 

and, thus, represent services provided and not goods sold per se (United Nations, 2009).  They 

do not hold any finished goods inventory, and material and supplies inventories consist only of 

operating expenses (rent, electricity, packing, etc.) without purchases for resale.  

                                                           
32 In case of responsive industries with forward lags > 1, the algorithm requires reiterating previous periods when the 

forward lag is reached.  
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4. Specific Models 

4.1. Traditional Leontief model 

The basic GDIO collapses back to Cochrane’s model with unrestricted trade when standard 

assumptions of the demand-driven model are in place.  All industries are considered as JIT, 

which implies that they have perfect foresight over all periods pre- and post-disaster; there are no 

supply constraints, nor inventories; and the production function drops labor and capital.  Under 

these assumptions, 𝐱S(𝑡)=𝐱A(𝑡)  ∀𝑡,𝑖 i.e., scheduled production always matches actual 

production since E[𝐟(𝑡+1)| info,mode]=𝐟(𝑡+1) and 𝐙A(𝑡+1)=𝐙R(𝑡+1) ∀𝑡.  Although 

the model is still “dynamic” due to time indexation, periods are independent as no constraints 

pass between them.  Also, regional purchase coefficients are constant since physical damages 

and labor force restrictions do not affect productivity.  To transform it back to the traditional 

Leontief model, these explicit supply constraints need to be translated into demand reductions 

via an inoperability coefficient 𝛄𝑖(𝑡) (Oosterhaven and Bouwmeester, 2016), so exogenous final 

demand becomes Eq. 19 and the traditional result follows. 

𝐟𝑖
IO(𝑡)=min(𝐟𝑖(𝑡),(1−𝛄𝑖(𝑡))∗𝐟𝑖) (19) 

 

4.2. Dynamic Leontief model 

The Dynamic Leontief model follows the same assumptions as before but adds a capital 

formation component when forming expectations on future final demand in Eq. 9 (Appendix 4).  

A fully specified system with capital formation (via matrix 𝐁) is: 

𝐱R(𝑡+1)=(𝐈−𝐀(𝑡)−𝐁(𝑡))
−1
[𝐁(𝑡)×E[𝑿R(𝑡+2) | info,mode]

+E[𝐟(𝑡+1) | info,mode]−𝐈FF(𝑡)] 
(20) 

 

Due to the assumption adopted, it collapses to the usual expression:  

𝐱R(𝑡+1)=(𝐈−𝐀−𝐁)
−1
[𝐁×𝐱R(𝑡+2)+𝐟(𝑡+1)] (21) 
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The model becomes dynamic through the capital formation link between periods. 

However, lack of inventories, simplified production function and perfect information, still do not 

allow input constraints to be passed between periods nor explicitly account for supply 

constraints. 

 

4.3. Sequential Inderindustry Model 

Following Romanoff and Levine (1977), the same assumptions are applied from the traditional 

input-output model, but industries are allowed to have different production modes.  The 

expectation function becomes: 

E[𝐟𝜇(𝑡+1)| info,mode]={

𝐟𝜇(𝑡+𝑘
𝑎) ,if anticipatory on 𝑘𝑎 periods

𝐟𝜇(𝑡+1), if just in time

𝐟𝜇(𝑡−𝑘
𝑟),if responsive on 𝑘𝑟 periods

 (22) 

 

This quasi-dynamic model reflects production timing, but perfect information does not 

allow constraints to arise.  In fact, as expected, estimated cumulative impacts using the 

traditional IO model and the SIM are exactly the same, as the latter only “spreads” production 

through time.  Now, it is possible to introduce inventories as in Okuyama et al. (2004), to 

retrieve more realistic results. 

 

4.4. Demo-economic Model 

Using the Demo-economic extension and applying the same assumptions as in the traditional IO 

model (subsection 4.1), the model collapses to the one shown in Eq. 19. 

 

5. Application Example 

We illustrate the Demo-economic GDIO with a 3-sector example for a small economy. 

The IO table for the region is presented in figure 4 and its parametrization in tables 1 and 2.  The 

model runs for 36 periods and we assume an unexpected event in period 13 when 15% of 

manufacturing becomes inoperable.  Recovery happens during the subsequent 5 periods (table 2). 
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In this example, we compare the effects of trade restrictions to losses in the region, simulating a 

fully flexible scenario and a restricted one.  These import constraints are implemented using the 

amount of foreign inventories / external available capacity at each period as proxies (𝜃=100 

and 𝜃=1.5 respectively).33 

 

Figure 4. Example IO Table, flow values in thousands of dollars 

 

Table 1. Regional characteristics 

Variable Description Value 

𝜏 Labor force participation rate 0.60 

𝜎 Expectations’ adjustment parameter 0.05 

𝜎M Foreign sectors expectations’ adjustment parameter 0.01 

𝜀 Error allowed for JIT and responsive industries 0.01 

𝑝 Resident population 40,000 

𝑙E External labor force available 1,000 

𝑠 Unemployment benefits per period $3,000 

 

Table 2. Industrial characteristics 

 Agriculture Manufacturing Services 

Production Mode 
Long Anticipatory 

(2 months) 

Short Anticipatory 

(1 month) 
Just-in-Time 

Hold Inventories Yes Yes No 

𝛒 0.99 0.98 0.98 

Wages (per period) $ 6,488  $ 29,224 $ 20,107 

Capital Inoperability 0% 15% 0% 

Capital Recovery Time - 5 - 

                                                           
33 The code and data for this example are available upon request. 

Agriculture Manufacturing Services Employed Unemployed Exports Output

Agriculture 5,129                  27,147                788                      13,107                713                      5,917                  52,801                

Manufacturing 9,192                  121,491              38,735                127,063              3,959                  42,109                342,549              

Services 3,084                  44,835                76,574                233,534              4,043                  13,367                375,436              

Agriculture 387                      2,459                  743                      1,724                  57                        -                       

Manufacturing 967                      7,378                  5,940                  7,760                  257                      -                       

Services 580                      14,757                743                      7,760                  257                      -                       

Taxes 1,632                  16,353                12,535                24,527                1,180                  4,067                  

Value Added (Labor) 31,831                108,130              239,378              

Output 52,801                342,549              375,436              

Employment 4,906                  3,700                  11,905                

Area (thousand sqft) 817                      812                      823                      

Im
p
o
rt

s

Final Demand
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 Figures 5-7 compare the results of both scenarios.  Overall, under full trade flexibility, 

production losses are lower and recovery faster than in the second scenario, since imports 

mitigate part of supply restrictions in the economy.  The model illustrates the major role that 

inventories and uncertainty have on losses and, especially, their duration.  The initial periods 

post-disaster follow a similar pattern in both scenarios: first, manufacturing production declines 

due to capacity constraints causing a reduction in local income (due to layoffs) and a 

subsequently small impact on services. Agriculture maintains the same production since it is 

anticipatory, thus overproducing.  In the next period, a substantial decline is observed in all 

sectors due to supply constraints from manufacturing (indirect effects) and lower final demand.  

Capacity restoration, expectation adjustments and enough inventories of intermediate goods 

allow a reduction in losses in period 15 during which most of the inventory created in the 

previous two periods is consumed.  The depletion of inventories, however, leads to insufficient 

intermediate local supply to support production from the service sector in the next period (when 

capacity is almost fully restored in the manufacturing sector).  The negative impact in the service 

sectors is exacerbated by the increase in unemployed residents who spend a significantly smaller 

share of their income in this sector than employed residents.  The two scenarios diverge from this 

point forward.  The flexibility in trade in the first scenario allows the service sector to overcome 

local supply restrictions and rebound in the next periods, following the other two sectors.  

Conversely, trade restrictions in the second scenario slow such adjustment, especially for 

anticipatory industries in which supply-demand unbalances increase the uncertainty in the 

economy, compromising their expectations’ correction.  This longer realignment process 

permeates the system for several periods, creating inventory and local supply variations together 

with final demand declines.  In time, inventory and final demand heteroscedasticity decline, 

allowing the economy to rebound. 
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Figure 5. Production losses by industry (flexible: left; restricted: right) 

 

Figure 6. Final demand by industry (flexible: left; restricted: right) 

 

Figure 7. Demographic indicators (flexible: left; restricted: right) 
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By incorporating intertemporal expectation adjustments via the SIM and a demo-

economic framework, this model reflects a non-smooth recovery process in contrast to other 

models currently available.  For example, by assuming no inventories and JIT production for all 

industries, we simulate Cochrane’s model (with the addition of a labor force component) for the 

same event (figure 8).  Notice that the recovery curve is monotonic increasing and such 

smoothness is a similar feature in the Inventory-ARIO model (see Hallegate, 2014) and the 

Inventory-DIIM (see Baker and Santos, 2010). The demo-economic GDIO better reflects the 

transient imbalance dynamics post-disaster until a new steady-state is reached during which 

uncertainty continues to impact production decisions. 

 

 

Figure 8. Production losses and final demand, Cochrane’s model with labor force 

 

6. Conclusions 

Disaster events present unique challenges to economic assessment due to the time-compression 

characteristic of such phenomena that creates a structural break followed by simultaneous and 

intense recovery efforts in the affected areas.  Due to modern “lean” production systems with 

high specialization and longer production chains, disruptions and subsequent production delays 

in one node of a network can quickly spread to other chains and create lingering disruptive 

effects.  The characteristics of modern production chains tend to exacerbate these problems: 

component production within the chain is highly specialized with little spare capacity (to exploit 
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scale economies).  On the one hand, this improves efficiency but flexibility in sourcing is often 

very limited creating major problems when there is disruption. 

Modeling these interdependent industrial linkages has been the main advantage of the IO 

framework, especially due to its relatively low data requirements, tractability and connectivity to 

external models.  Nonetheless, given the simplicity of the traditional Leontief demand-driven 

model, several extensions have been proposed to address issues of supply constraints, dynamics 

and spatio-temporal limitations but a comprehensive solution is still lacking.  On the other hand, 

CGE models, while offering greater flexibility, may not be able to fully embrace the rigidities in 

the production chain. 

In a step towards a more complete methodology, the GDIO model is proposed in this 

paper.  It derives from insights of the past literature and is shown to be theoretically consistent 

with the IO framework.  It encompasses the virtues of intertemporal dynamic models with the 

explicit intratemporal modeling of production and market clearing, thus allowing supply and 

demand constraints to be simultaneously analyzed.  The key roles of inventories, production 

timing, primary inputs and physical assets in disaster assessment are explored and previous 

limitations in the literature were addressed.  Seasonality can be included by using intra-year IO 

tables that can be derived via the T-EURO method (Avelino, 2017).  The base model is extended 

via a demo-economic model to include induced effects post-disaster, accounting for level and 

mix changes in labor force and household income/expenditure patterns.  It is “general” in the 

sense that simpler models as the Leontief formulation, Dynamic IO, SIM and demo-economic 

models can be easily derived by using simplifying assumptions.  The GDIO model also allows 

for the extraction of balanced IO tables at each time step; this option might be advantageous in 

optimizing recovery efforts. 

A simple application showed the advantage of the Demo-economic GDIO in capturing 

the impact of uncertainty in the recovery process, through intertemporal expectation adjustments 

that are affected by heteroscedasticity in inventory levels and final demand (endogenous in our 

model).  The new system offers a more natural recovery curve in which breaks in the recovery 

process are common.  Further research will be needed, especially for an application of the model 

in a real natural disaster situation in a multi-region context with seasonal IO tables and where 

comparison of the results with existing methodologies can be made.  
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